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We present a second-order Godunov method for computing unsteady, one-
dimensional wave problems with fracture and cavitation in coupled solid—water—
gas systems. The method employs a hydro-elasto-plastic body, the Tait equation, and
the ideal gas law for solid, water, and gaseous phases, respectively, and models both
fractures and cavities as vacuum zones with distinct borders. The numerical approach
utilizes a Lagrangian formulation in conjunction with local solid—water—gas-vacuum
Riemann problems, which have unique solutions and can be solved efficiently. The
various phases are treated in a unified manner and no supplementary interface con-
ditions are necessary for tracking material boundaries. Calculations are carried out
for Riemann problems, wave propagation and reflection in a water—rock—air system,
and spallation and cavitation in an explosion—steel-water—gas system. It is shown
that the Godunov method has high resolution for shocks and phase interfaces, clearly
resolves elastic and plastic waves, and successfully describes onset and propagation
of fracture and cavitation zonesg 1999 Academic Press

1. INTRODUCTION

Wave problems in solid—water—gas systems with distinct phase interfaces are comn
encountered in practice, such as in water entry of arecovered body, reservoir-dam intere
during earthquakes, and spallation of steel plates caused by blast waves. In these sy
each phase obeys a different equation of state (EOS) and interacts with the others in
linear manner. These complexities make numerical simulation of the multiphase probl
a particularly formidable task.

The conventional numerical approach for simulating such problems is based on de«
posing the multiphase systems into individual phases and solving each phase sepal
The coupling and interaction among phases is accounted for by supplementary c
tions at phase interfaces. This approach has been successful in many applications, ir
ing problems in multiple spatial dimensions, e.g., [1, 2]. However, it does require sc
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simplifications. For example, in a solid—fluid interaction problem, the computation may
limited to an elastic solid and an incompressible flow (e.g., [3]). Furthermore, certain
ficulties such as non-physical oscillations may arise across phase interfaces and corr
remedies have to be adopted, e.g., [4, 5]. Additionally, in calculations of shock waves in s
phases, the standard numerical method has been to use central differencing to discre
space the equations of motion in non-conservation form. Consequently, artificial dissipe
terms need to be explicitly introduced to suppress numerical oscillations (e.g., [6]).

Godunov’s method provides a novel alternative for developing numerical algorithms
multiphase systems. In recent years, Godunov-type methods were developed and su
fully applied to calculate dynamic responses of solid media. Trangenstein and Colellz
conducted an extensive study to establish a second-order Godunov scheme for col
ing finite deformation in isotropic elasto-plastic solids with work-hardening. Trangenst
and Pember [8] extended the scheme to the Eulerian frame of reference.eiVanfp]
described another Godunov method for studying elastoplasticity of a hyperelastic i
rial with small anisotropy. More recently, Godunov-type methods have been introdu
to investigate multiphase problems. Miller and Puckett [10] designed a second-order
dunov scheme for materials in condensed phases, i.e., liquids and solids in hydro:
limit. They employed a model based on the Mie—Gruneisen EOS and a linear Hugo
and their scheme is capable of handling spallation. Miller and Puckett [10] also repo
that Colellaet al. [11] proposed a Godunov method for two or more gases. Tang &
Huang [12] extended the standard MUSCL scheme developed by van Leer [13] to flow
gas and water with vacuum zones. For the extension several techniques were preser
prevent the computed density from becoming smaller than its lower bound. The resu
scheme, denoted as an E-MUSCL scheme, can capture shocks, gas/water interfaces,
as vacuum zones and takes into account water’s capability to resist tensile stresses
E-MUSCL scheme was applied to study cavitation phenomena within a water shock
[12, 14].

The objective of this paper is to develop a second-order Godunov method for compt
unsteady, one-dimensional wave problems with fracture and cavitation in coupled sc
water—gas systems, in which there are distinct interfaces between different phases.
the existing E-MUSCL scheme [12] for coupled gas and water systems with vacuum zc
to accomplish this objective a new solid phase formulation must be developed that ce
naturally incorporated into it. A major difference between responses of a solid and tt
of a fluid is that the former usually behaves as a shape-memory material. That is, u
small applied forces it exhibits elasticity and tends to return to its original shape wl
the forces are removed. Under sufficiently large applied forces, on the other hand
solid tends to become plastic and acquire a permanent deformation even after the f
are removed. Therefore, as a result of plasticity, responses of a solid cannot be unic
determined without the knowledge of its prior history. In this paper, a solid is mode
as a hydro-elasto-plastic body—a model frequently adopted in engineering, such as |
velocity impact and explosive working, e.g., [15]. The Murnagham equation and Hool
law are used for the hydrostatic pressure and the shear stress, respectively, in the E
the model. Under simple tension or simple compression, which is valid for a solid
during small time intervals, the EOS is a single valued strain-stress curve and the eque
of motion become a hyperbolic system of conservation laws. In addition, fractures wi
a solid are treated as vacuums. Consequently, solutions to relevant solid phase Rie
problems can be constructed and obtained by methods similar to those employed for
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water-vacuum Riemann problems in [12]. All these elements will be incorporated into
new solid phase scheme.

Our Godunov method handles all phases as single systems and treats different pha
a unified manner—that is, same numerical procedures are employed for all phases. Th
kinds of solid—water—gas-vacuum Riemann problems involved in the proposed apprc
one being a classic Riemann problem and the other being a generalized one, have u
solutions and can be solved either with a Newton iterative method or via simple algek
formulas. Locations of material boundaries (phase interfaces, fracture borders, and c
borders) are determined directly by solutions of local Riemann problems at grid no
thus eliminating the need for supplementary interface conditions. Moreover, our methc
conservative and needs no explicit artificial dissipation term other than that inherent ir

This paper is organized in seven sections. In Section 2 we present the governing equc
and fracture and cavitation models. Section 3 constructs resolution of the classic Rier
problem, describes procedures to solve the problem, and discusses existence and u
ness of its solution. Section 4 deals with the generalized Riemann problem. In Sectic
our formulation for coupled solid—water—gas systems is presented. Section 6 display
results of computations we have made with the method to demonstrate its performanc
robustness. Finally, in Section 7 we summarize the Godunov method and discuss fi
work. In the current paper we only give final results for water and gaseous phases
extensive analysis about them can be found in [12].

2. GOVERNING EQUATIONS

2.1. Equations of Motion

In Lagrangian coordinates, the equations of motion for both an elastic-plastic soli
plane strain and an inviscid flow in one spatial dimension can be formulated in conserve
form as

U aF )
— =0 2.1
ot T ar ’ (2.12)
where
U=V,uE)T, (2.1b)
F(U) = (—u, P,uP)’. (2.1c)

Here, the independent variables are the timend the mass coordinate V = pr./ 0,

P = p/pret., aNdE = e+ u?/2, wherep,. is a reference density. The unknowns aré¢he
density,u, the velocity,p, the pressure in the fluid or thedirection stress in the solid, and
e, the internal energy. For convenience, we also refer toflieection stress as pressure in
this paper. The mass coordinates related to the space coordinatby

X

r= = p(t, n) dn. (2.2)
Pref. Jo
All three differential equations in (2.1) will be used for a gas, whereas, due to their E
as shown below, only the first two equations in (2.1) will be employed for either a wa
and a solid phase. Pressure is continuous across a material boundary, and it is zero
interface is adjacent to a vacuum.
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2.2. Equations of State

A solid usually exhibits behaviors much different from those of a fluid. However,
presents features of fluids under sufficiently large forces. A hydro-elasto-plastic body
solid model that can reflect properties of fluids, while naturally and continuously descri
the transition between a solid and a fluid [16]. The EOS of such a model may be writter

4
p = w(V) + éS(V57 Ts, V)v (2.3&)

wherew (V) ands(Vs, 15, V) are hydrostatic pressure and shear stress, respectively,
subscripts referring to an initial state. We use the Murnagham equation for the hydrost:

pressure,
m( /Va\?
w(V):E (V) —1)+pa (2.3b)

and the Huber—Mises criterion and Hooke'’s law for the shear stress,

T, IT] < Y/2,
S(Vs, Ts, V) = . (2.3C)
Y sign(z)/2, 7| > Y/2,
where
ot GoaVv
—_—=——— 2.3d
ot V ot ( )

In EOS (2.3),G, m, Y, andB(>1) are the modulus of rigidity, the bulk modulus, the yielc
stress, and a positive constant, respectively, and the subaargiers to standard atmo-
spheric conditionsG=E/(2(1—«)) andm=E/(3(1—2ur)), E and i being Young’s
modulus and Poisson’s ratio, respectively. The EOS (2.3) corresponds to a work-harde
material, and it gives @ — V relation as shown in Fig. 1. In the figure it is seen that for ar
state

w(V) — al <p=zwlV)+ 2—Y, (2.4)
3 3

and linesp=w (V) £ 2Y/3 correspond to plastic deformations and any path between:
two lines relates to an elastic deformation. Although the EOS does notinclude some fa
such as entropy increase, it describes a solid’s elasticity and plasticity and fluid beha
in a simple way and thus is often used.

In case of simple tension or simple compression, (2.3) can be rewritten gs-the
curve

w(V) + 2Y, V <V,
p=S w(V)+4GL+1), Vo<V <V, (2.5a)
w(V) — 3Y, V > Vi
Here
Vi = Ve 2 tV/@e) (2.5b)

V, = VeePs—1/@26), (2.5¢)
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w(Y) +2Y/3
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w(Y) - 2Y/3
1 a
e
0 \%
FIG. 1. The EOS (2.3): 1 and 2 respectively represent the tension and the compression yield points inc
by loading.

If initial states is at pointb in Fig. 1, then the curve isc — 2 — b — 1 — a—, on whichp

is a single valued, monotone function\éf
In fact, the above model may be an approximation to some other solid models.

instance, in case of a small deformation ghd 1, from curve (2.5a) we can derive that

m(¥% — 1) + pa + 2Y, V <V,
pram(2—1)+pa+3(G(e—1)+1w), Vo<V <=V (2.6)
m(% — 1) + pa — 2V, V > Vi

In view thatV,/V — 1 is ther -direction strain, (2.6) defines a piecewise linear stress-strz
curve, and it is actually the well-known linear elastic-perfectly plastic model.YLbe

infinity; (2.3) reduces to an elastic model.
For a water phase we use the Tait equation as its EOS

p= pa"((%) - 1> + Pa, (2.7

wherek = 3045 andx = 7.15. Equation (2.7) is accurate enough up to a pressure’d?4.0
in magnitude (see [17]). For a gaseous phase we have the ideal gas law

wherey is the ratio of specific heats.
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2.3. Fracture and Cavitation Models

Fracture or cavitation will take place at the region where pressure drops to a critical v
Pv,

P= Py, (2.9)

where the subscript refers to fracture or cavitation conditions. Solid and water phas
are capable of resisting tensile stresses while gaseous phases do not possess this cay
Pvep < 0, Pyw < 0, andp,g =0, subscriptep, w, andg standing for solid, water, and gaseous
phases, respectively. In genemlg > puw > Puep- A Solid may also break owing to fatigue,
and the following is the criterion due to Tuler and Butcher [18] for the event,

5 Cmi A
/ (W) dt=K, (2.10)
0 | Pl

wherepy; is the critical pressure for onset of the fatigiés the time when the solid cracks,
andi andK are constants. Moreover, unlike water phases, a solid will no longer be abl
support any tensile stress at the place where it once cracks in history.

In view of the above, we assume that: {fgcture or cavitation will take place at the
region wherg(2.9)is satisfied. Alspa fracture will appear oncé€2.10)holds (2) p, takes
different values at different places

Pveps in solid,
Pyw > in water,
D L | (2.10)
Pyw, at solid—water interface
Pugs at solid—gas interface
Pug> at water—gas interface

whereg =0 or 1, corresponding to the case that the solid does or does not crack in histc
respectively(3) Either a fracture or a cavity is regarded as a vacuum.

The fracture and the cavitation models are similar to those employed by other aut
(e.g., [15, 19)).

3. THE RIEMANN PROBLEM

3.1. Solution of the Riemann Problem

Consider the Riemann problem of (2.1), or the initial value problem for the system (:
with initial conditions given by the step function

H, r<ro,
Uieo = { ° (3.1)
H, r>ro,

whererg is a constanttd = (V, u, E)T, being a state of a gas, a water, a solid, or a vacuul
and the subscriptsandr denote the left and right sides of, respectively.

In general, the solution to a Riemann problem for a hyperbolic system of conserva
laws consists of centered waves connected by constant states. In the solution of Rie
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problems (2.1) and (3.1), the number of the centered waves depends on the differ
betweenH, and H; and behaviors of the medium at either side ofln addition, even if
neitherH, nor H; is a vacuum state, a vacuum will take placegatfter resolution of initial
discontinuity (3.1) when the following condition is satisfied,

Pv o Pv o
u — U 5/ fd,o+/ —dp, (3.2)
p P p

Pr

wherec = ,/0p/3dp, being the Eulerian sound speed. As shown in Subsection 3.2, (3.2
equivalent to (2.9). Since the initial discontinuity is resolved within no time, (2.10) will n
be used as a criterion for onset of a vacuum. For detailed discussions about the soluti
a Riemann problem readers may refer to [20, 21, 12].

Let subscripts bel orr and an asterisk indicate resolved values besjd&\Ve first
consider the case that initial discontinuity (3.1) has a solid at one sige A§suming that
only simple tension and compression takes place and using (2.5) and Fig. 1, we cons
resolved wave systems in the solid as follows.

(1) P* < Py. Inthis case, after the resolution there are two rarefactions in the so
a leading elastic wave and trailing plastic wave. For the elastic and plastic waves one
respectively,

L ¢
U; — Ug = :t/ —dp (3.3a)
s P

s

and

p*
U — Uy = :I:/ C dp. (3.3b)
pn P

1

The signst refer to the direction of propagation of a wave, here a rarefaction, the posi
and the negative signs being the right and the left, respectively. Equations (3.3) yield

.
u*—uS::t/ S dp. (3.4)
ps P

s

(2) P1 < P* < Ps. Now there is only one rarefaction, an elastic wave, and (3.4) st
holds.
(38) Ps < P* < P,. An elastic shock is present. Rankine—Hugoniot conditions reac

EWe(U* —Us) — (P* = Ps) =0, (3.5b)
whereW, is the Lagrangian speed of the elastic shock. It is derived form (3.5) that

P* — P

u* —us ==+ ,
s We

(3.6a)

P*— P,
We= /v (3.6h)




WAVE PROBLEMS IN SOLID-WATER-GAS SYSTEMS 797

(4) P, < P* < Ps. Subscript 3 refers to a point where

P,—P, P,—Ps 3.7)
Va—Vo Vo — Vs '

At this time, there are two shocks, a leading elastic shock and a trailing plastic shock.
conditions for the two shocks yield

u* — Us = i(\/(PZ - Ps)(Vs - VZ) + P*V; P2> > (3-8a)
p

P*— P,
Wo =[Gy (3.8b)

Here, W, is the Lagrangian speed of the plastic shock.
(5) P* > Ps. Now, a single steady elasto-plastic shock occurs and one has

P* — Py
u*—us ==+ , 3.9a
=t (3.92)
P* — Py
Wep = , 3.9b
P Vs — V* (3.9b)
whereW, is the Lagrangian speed of the elasto-plastic shock.
The discussions from (1) through (5) can be summarized as
U* — Us = £ fep(Vs, Ps, PY), (3.10a)
where
P*c *
Ps Edp’ P = PS’
B Ps < P* <Py,
fep(VS, Ps, P*) - © N (3.10b)
VP =P)(Vs = Vo) + S, Pp< PT < Py,
s P* > Ps.

If B=1, it is readily seen from (2.5) or Fig. 1 that wh&i > P, the following always
holds:

P*—P, P—P
> .
V* — Vs Vo — Vs

(3.11)

Therefore, the above elasto-plastic shock will never occur. This case may be treate
Ps = +o00.
By similar discussions we obtain for a water phase the formula

u* —ug = +f,(Ps, P9, (3.12a)



798 TANG AND SOTIROPOULOS

where
UG (VICT ), P* < P,
fu(Ps, P*) = Ff‘jlp< e~ Y ° (3.12b)
W, P* > P,
P* — Ps
W, = , 3.12c
Vs — V* ( )
and for a gaseous phase
LI* - LIS == :t fg(VS, Ps, P*), (3.138.)
where
%((E)(V—D/ZV _ 1) P* < Py
fg(Vs, Ps, P¥y = 772005 - (3.13b)
g P*—Ps *
W, P* > P,
yYy+DHP*+(y —DP
Wy = cs\/ > = (3.13c)
Y Fs

Here,W,, andWj are the Lagrangian speed of a shock in the water and the gaseous ph
respectively, an€ = ./—9P/dV =c/V, being the Lagrangian sound speed.
Combining (3.10), (3.12), and (3.13) we come to the conclusion that

U* - US = :l: f (Vs, Ps, P*), (3.148.)

where

fep(Vs, Ps, P*), in solid,
f(Vs, Ps, P*) =< f,(Ps, P*), in water, (3.14b)
fg(Vs, Ps, P¥). in gas
andP* e (P,, +00).
When bothH, andH; are not a vacuum state but (3.2) is satisfied, or, when efther
H; is a vacuum state, (3.14) gives

P*=0,

(3.15)
u* = £1f(Vs, Ps,0) + us.

In case of (3.15)u* and P* are determined explicitly, whereas, iteration is needed
solving (3.14a). We eliminate* in (3.14a) and then have

fM, R, P+ F(ML PP —(u—u) =0. (3.16)
If we define

FP) =fM. R, P)+ f(V, B, P)—(u —u), (3.17)
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Eq. (3.16) can be solved by the Newton iterative method

FPy \™
(n+) _ p) _
P =P (dF(P)/dP> , (3.18a)
where
PO — p, (3.18b)

and the superscrigh) refers to thenth iteration.

If P < Ps, a numerical quadrature is necessary for calculafipgvs, Ps, P). We chose
the Simpson formula for the quadrature, and the truncation error of the formula is of o
O(1/m*), mbeing the total number of nodes in the quadrature. In solving (2.144a), to achi
the full accuracy of the formula) (P™N) — P*) should be no larger thad(1/m*), N being
the total number of the iteration.

Once P* and u* are obtained, the value of* is available. In a solid phase, when
V, < V* < Vi, one may also use a Newton iterative method to solve (2.5a); it is eas)
verify that the method converges if its initial value is seMasOtherwise, one can obtain
V* from (2.5a) explicitly. In a water phas¥,* is given by (2.7). In a gad/* is available
from the R-H condition

in case that a shock is present at sider, the isoentropic relation

P_ P
p*Y B ps”
in case that a rarefaction is present at side

(3.19b)

3.2. Existence and Uniqueness of the Solution to the Riemann Problem
and Convergence of its Solver

LEmMmA 3.1. f(Vs, Ps, P) is a continuous and monotonically increasing function of F
and its first and second derivatives are positive and negatbapectively.

Proof. First, we considerfep(Vs, Ps, P). Since fep(Vs, Ps, P) is continuous within
(=00, Ps], (Ps, P2], (P,, Ps], and(Ps, +00) and in view of

ol fep(Vs, P, P) = fep(Vs, Ps, Py, (3.20a)
plim fep(Vs, P, P) = fep(Vs, Ps, Po), (3.20b)
L lim fep(Vs, P, P) = fep(Vs, Ps, Pa), (3.20c)

it is known thatfep(Vs, Ps, P) changes continuously witR. Differentiating (3.10b), one
obtains

& P <P,
di(Ve P P) | 2(w+ &) Pe<P=P o)
dP ) i(w, + ). P.<P=Ps '
%(V\}ep—i-wezp), P> Ps.
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Furthermore, by a long but straightforward calculation, one has

._\

o P<P,
— (rziﬁftfl) 3pfe?v2) PL<P <P,
FioVoPuP) |-t (Sl mici s O, <R @2
(2(VV\>I32(VSC2) ¢ +V1)Wp), P, <P <P
—z—a(z(v“:;;;:i%) + P D) PPy

Itis then seen that the first and second derivativefggilvs, Ps, P) are positive and negative,
respectively.

Second, by similar discussions we can conclude that Lemma 3.1 is also true for |
fu(Ps, P) and fg(Vs, Ps, P). For details refer to [12]. This completes the proof o
Lemma3.1. &

Assertion 3.1. Criterion (3.2) is equivalent to criterion (2.9).
Actually, we can interpret criterion (2.9) as whéi drops to its lowest possible value
Py
ui > ut, (3.23)

where the subscripts and+ stand for the left and the right sidesrgf respectively. Then
from (3.14a) we know that (2.9) holds true if and only if (3.2) is satisfied. Furthermore,
have

THEOREM3.1. (1)The solutionas constructed in Subsecti8ril,to the Riemann prob-
lem for (2.1) with (3.1) exists uniquely2) The Newton iterative methd8.18) converges
to the solution if it has no vacuum state.

Proof. (1) When eitheH, or H; is a vacuum state, the problem has a unique solutic
P*, u*, andV* simply given by (3.15), (2.5), (2.7), and (3.19).

When neitheH, nor H; is a vacuum state, there are two possible cases. The first is t
(3.2) is satisfied. In this case, a vacuum takes placePand*, andV* are also determined
uniquely by (3.15), (2.5), (2.7), and (3.19).

The second case is that (3.2) does not hold, that is, no vacuum occurs after the reso
and P* is given by (3.16). Now we have

Py C Py c
u — U > / —dp +/ —dp, (3.24)
o P o

namely
The definition ofF (P) yields

F(+00) = 400 > 0. (3.26)
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Besides, it is known from Lemma 3.1 th&tP) is a monotonically increasing function
of P. As a result,F (P) passes the point of zero once and only once, i.e., (3.16) ha
uniqgue solutionP* € (P,, +00). In view of (3.14a), (2.5), (2.7), and (3.19), the existenc
and uniqueness d&?* guarantees the existence and uniqueneg$ ahdV*. Therefore, the
Riemann problem has a unigue solution.

(2) Consider an intervalP,, M), whereM is a constant sufficiently large such tha
F(M) >0 andP* € (P,, M). We conclude from (3.25), (3.26), and Lemma 3.1 that (1
F(P)F(M) <0, (2 dF(P)/dP+£0, (3)dF%(P)/dP?<0, and (4)(F(P) - dF3(P)/
dP?)p_p, > 0. It can be proven that iteration (3.18) tends to its fixed point (cf. [22]):

lim P™ = p*. (3.27)

n—o0

This completes the proof of the theorenll

4. THE GENERALIZED RIEMANN PROBLEM

For accuracy enhancement in the proposed Godunov method, we consider the i
value problem for (2.1) with the initial data

Qi(r), r <ro,
= 41
Vi { Q). r>rp (4.12)

whereQ(r) = (V(r), u(r), E(r))", each component &d(r) being a linear function af,
and

im Qr)=H, im Q;(r)=H,. (4.1b)
r—ro—0 r—ro+0

The initial value problem for (2.1) with (4.1) is regarded as a generalized Riemann prob
of the classic Riemann problem for (2.1) with (3.1). We make a hypothesis similar
thatin [23]: att = 0+ the generalized Riemann problem has a solution with the same w
structure as that of its associate classic Riemann problem and, consequently, (3.14) or
holds true. Under this assumption we derive the formulas for time derivativgst)* and
(0P/ot)* as follows.

First, consider the case that the solution of the generalized Riemann problem has nc
uum state. Differentiating (3.14a) and using (2.1), one can obtain expressiqas fot)*
and (a P/at)*. For example, in a solid phase within whiéh < P* < P, differentiating
(3.14a) yields

D D

Ps

Letting(D/Dt)* =0d/dt = C*9/dr and(D/Dt)s=9/9t & C4d/0r in (4.2) and employing
(2.1) give the expression

B D e ) e
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Similarly, the expressions in the other cases can be obtained. Two of these expres:
one corresponding to the right sidergfand the other to the left side of, comprise the
following linear algebraic system for the time derivatives,

@) -G ) e

where for a solid phase

1, P* < P,
e+ 3 Pa<Pr<Py
ayg, &1 = 2v(\:/*g2 L3 P, < P* < Py, (4.4b)
M 43 PTs Py
&, P* < P,
o T Pe<PT=Py
Ay, dpo = ﬂg n 1 P, < P* < Py (4.40)
2C* 2W,° ’
2\(/:\/:3 + 2\,%,8'), P* > Ps,
Cs, P* < P,
b= { 3+ % Ps < P* <P, (4.4d)
Pt PP,
1, P* < P,
b= 2z +3 Pe<P <Py (4.4¢)
\2%255 +3. P*>P

for a water phase

a1, A1 = ¢ B (4.4f)

Mo+l PP
W2, + CsW,r,  P* <P,

by = i, o - (4.4h)

W f W, PT <Py

by = (4.40)

V\é‘Zér %u: ’ P* E PS9
Ao, A = g (4.49)

W2 3w,
+ 5, P* > Ps,

(@ —1)(P* —Ps)
er = s
2(V*C* — VCo)

(4.4)
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and for a gaseous phase

P* < P,

C*
ajg, a1 = (4.4K)
Y+ DV = Vs)W,
o+ 2W, P* > P,
oy P <P,
Q12,822 =\ . (4.41)
g + (}/+1)(V —Vs) +1, P* > P,
( Wgr)c P* + (y+1)(P* Ps) + C2’ P* S PS’
by = L v>w ) (4.4m)
s _I_WZ (V—l)(zl/ —Vy)C2 +C2, P* > P,
W \ P*Wy 1)(P* — P)Wy
—(1—-51) st LTS L Wy, PRSP,
b, = (4.4I’])
VE=VoWS  (y —1)(V* — Vo)W,
— s v, T 2W P* > P,

W — (y — PY=D/2r (P _ Py
o ZVSCS(p*(yfl)/Zy _ ps(yfl)/Zy)'

(4.40)

It is easy to verify that in the solid, the water, and the gas @) axm > 0 (k, m=1, 2).
Consequently,

DET(axm) = a11822 + a1081 > 0. (4.5)

According to linear algebra, we have the following conclusion.
Assertion 4.1. Under the restriction of < 3, the solution of (4.4a) exists uniquely.

Second, we consider the case that the solution has a vacuum state. At this time,

aP\*
(m)=a (4.6)

and (4.4a) gives rise to

B i@ ) e

5. THE SECOND-ORDER GODUNOV METHOD

Construct a grid in such a way that each material boundary will be right at a grid nc
Integrating system (2.1) over| t"*1] x [r;, ri1], using the Green formula, and omitting
third and higher order terms, we have the following Lagrangian formulations in conserva
form,

Vlnill/z \7|n L1z T A2 (WG — W) (5.1a)
U2 = Whayo = Mo ((P)in- — (PI), (5.1b)

EinJrll/Z = Ei+1/2 = M2 ((WG - (P — WL (P, (5.1¢c)
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where
1/9u\*
=u+Z(—] A 1
(uy=u +2(8t) t, (5.1d)
1/9P\*
Py=P +>(—) A 1
(P) +2<8t) t, (5.1e)

A{‘H/Z = A"/Aij10r, A"t = " —t", the time step, and\j 11/2r =ri41 — 1y, the grid
spacing. The grid does not necessarily have a uniform spacing. To determine the RF
(5.1d) and (5.1€), we need to solve local Riemann problems and local generalized Rier
problems, as formulated in Sections 3 and 4, respectively, atmodibe states beside the
initial discontinuity of the problems are given by

_ Al LR

R 12 Ali_i/zl’ (r —ri—1/2), r<ri, (5.2a)
and

_ Al LR

R + #i/zr(r —Tlit1/2), r>ri, (5.2b)

or, (5.2a) or (5.2c) and a vacuum state. Herg» = (rj + ri;1)/2 andAp,,; ,R* is a cell
slope,

Al1pR = (RIGL,- — (RIS (5.2¢)
whereR refers toV, u, andP. In a solid phase/* and P* are related to each other by
(2.5), in which the initial state can be,“ﬂ/z andP?,, . If the discontinuity is comprised
by (5.2a) and (5.2b), i.e., initially there is no vacuum state at mpdenew vacuum may

take place there either for the sake of

Vi Vit

ul —ul, < / C dV+/ cdyv, (5.3a)
v, vV,
which is derived form (3.2), or, due to
—— e A

P: — min((P ., + P! 2,P

2n< f (P 1|/|23| ley2)/ f)> A"t=K, (5.3b)
f

which is derived from (2.10).

Once\7i+1/2, Uit+1/2, and E_i+1/2 are updated using (5.1ﬁ+1/2 can be computed as
follows. Assume that pressure in each cell of the solid increases or decreases monoton
during the time intervaft", t"*1). Then (2.3) gives rise to

n+1

Einjrrll/z =712~ GIn &nﬂ/z, (5.4a)
i+1/2
and
o (w(VITh2) +3Y). Vi, < Vi,
Pl = S (w(VT) + 5u). Ve < VI < Vilihs  (5.4b)

e (0 (Vi) = 3Y). i > Vit
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where

Vn+1

i+1/21 = VP+1/28(2TT*1/2+Y)/(ZG), (5.4¢)

Vn+l

ilaz = Vil e )/ (5.40)

From (2.7) and (2.8) we respectively obtain for a cell of water the sufficiently accur

formula
prod, = P (g [ 2=t ) 1) 41 55
2= PRV (5.5)

and for a cell of gas

2

Pn+1 y—1 E_n+1 Gin-tll/Z 5.6

i+1/2 = Vn+11/2 Y Rl b (5.6)
i+

Each cell's location in the Euler frame of reference is tracked by evaluating the positi
of its two ends via the formula

X =+ (WAt (5.7)

We assume that a vacuum may and only may appear between two slabs, i.e., right at
node. A vacuum zone is bounded by its two ends and its position can also be tracke
(5.7). In calculations, if a vacuum is very small (when. — x;_| < ¢, € being positive and
sufficiently small), it will be ignored.

Equations (5.1)—(5.7) are the method we propose for solid—water—gas systems.
method deals with different phases in unified procedures, and it only employs (5.7), wil
is necessary for tracking interior nodes, but no other extra conditions in tracking matc
boundaries. Since it uses the same basic techniques as the standard MUSCL schen
to van Leer [13] and the previous E-MUSCL scheme [12] and contains both of them a
special cases, formulation (5.1)—(5.7) may still be referred to as an E-MUSCL schen
further extended version of the standard MUSCL scheme. If all cell slopes are set equ
zero, the current E-MUSCL scheme will reduces to a first-order Godunov scheme.

In computations two algorithms are necessary. The first is a monotonicity algorit
proposed by van Leer [13] to suppress numerical oscillations:

min(2|AMR|. |AD,1,R". ,+1R\) sgnAl,, ,R*,
AR = SgMATR = 59m|+1R = sgn, 1 o R", (5.8)
0, otherwise

Here, A"R=R",, , — R, ,. The second is an algorithm of lower bound of density t
prevent the computed density from becoming smaller than its lower boufi®]:

n N \7in+1/2 Ajiajof
A|+l/2u =min{ Al U5 Vi ol 1— —— | =1 |- (5.9
vV, A1t
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Both (5.8) and (5.9) are limiters over cell slopes and they act as a kind of numer
viscosity.

Some restrictions on the time step are also needed. For the sake of stability, no w
issuing from one end of a slab are allowed to interact with those from the other end,

CFLAi+1/2|'

<
~ 2max(|WL [, Wi,

A"t

(5.10)

whereW; is the speed of either a shock wave or a rarefaction’s front and-<CEL\When

Al 1, <0, zone-tangling (the left end of a slab moves across its right end or vice ve
is not permitted:

xn —xN
AMt < S S (5.11)
AU

At last, as a vacuum exists at nodeand (u){'_ > (u){'_, slab overlappingX., — xi— <0)

should be avoided:

n _X.I"I

At < (5.12)
<u)i— - (U>i+

x

In summary, the present formulation consists of the following major steps:

(i) Compute tension and compression yield values according to (5.4¢) and (5.4d)

(ii) Mark the grid nodes where vacuums have already occurred and utilize criter
(5.3) to see if new vacuums will take place.

(i) Use (5.2), (5.8), and (5.9) to set initial discontinuities for local Riemann probler
at grid nodes.

(iv) Find solutions of the Riemann problems; obtain value¥f, u’,, and P* via
(3.18), (3.14), (3.15), (2.5), (2.7), and (3.19) and calculate/dt);", and (9 P/dt);" via
(4.4), (4.6), and (4.7).

(v) Determine the time step with the aid of (5.10)-(5.12).

(VI) Update slab averagé¢i+1/2, LTi+1/2, Ei+1/2, ‘[_i+l/21 and PH_]_/Q by (51) and
(5.4)—(5.6), and use (5.7) to track locations of cells, phase interfaces, and vacuum zor

6. NUMERICAL EXAMPLES

6.1. Riemann Problems

The following three Riemann problems are calculated to validate the ability of the pre:
method to deal with different phases and resolve waves and vacuum zones:

n x < O(steel);p = 804683 kg/n?, u = —1000m/s p = 8 x 10° Pa 6.1)
x > O(steel);p = 775574 kg/m?, u = 1000m/sp = —1.9 x 1P Pa '

() x < O(steel);p = 780006 kg/n?, u = 300m/s p = 2.5 x 1P Pa 6.2)
x > O(water):u = —300m/s p = 2.5 x 10° Pa '

a x < O(steel);p = 7800 kg/nt, u=0m/s p=1.01325x 10° Pa 6.3)
X > 0(gas);p =50 kg/n?¥, u=—-500m/s p=10°Pa y = 1.4. '
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TABLE |
Parameters for the Steel

Property Value Dimension
Pa 7800 kg/ni
m 2.225x 10% Pa
B 3.7
G 8.53x 10 Pa
Y 9.79x 108 Pa
o8 —2x 10 Pa
ps —1.9292x 10° Pa
A 133
K 3.35x 10°° s

Properties of the steel are those employed by €hal. [15] and shown in Table I. In
problem (1), after resolution of the initial discontinuity, two rarefactions propagate to |
left, an elastic shock travels to the right, and a vacuum takes place between the rarefa
and the shock. The faster rarefaction is an elastic precursor, and the slower oneis ar
wave. After resolution of initial discontinuity (Il), an elastic shock (a precursor) anc
plastic shock move left in the solid, and a shock propagates right in the water. In prok
(1), an elastic shock in the solid and a shock in the gas propagate to the left and the r
respectively.

The numerical solutions and the corresponding exact solutions for the three problem
displayed in Figs. 2—4. Comparing the numerical solutions with the exact ones, we see
our scheme correctly resolves all the waves and the vacuum zone. It captures shock

1.0E403
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7.9E403
403 -5.0E+02 OQ.0E+00 §.0E+02
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FIG. 2. Riemann problem (I). Solid lines, exact solutions; circles, numerical solutions. Cell nunilig),
CFL=1, andt =5.07 x 10*s.
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FIG. 3. Riemann problem (Il). Solid lines, exact solutions; circles, numerical solutions. Cell nusifer
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narrow transition regions and essentially without oscillations, and its resolution for ela
and plastic shocks is similar to that of other second-order Godunov methods (e.g., [7],

Tollustrate that our method has second-order accuracy, we employ a first-order God
scheme, constructed by setting all slab slopes equal to zero, to compute the same
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FIG. 4. Riemann problem (lll). Solid lines, exact solutions; circles, numerical solutions. Cell nusatier

(steel)x 50 (gas), CFl=1, andt =4.04x 10™*s.
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FIG. 5. Calculations using the first-order Godunov scheme. All relevant parameters are the same as th
Figs. 2, 3, and 4. Solid lines, exact solutions; circles, numerical solutions. (a) Riemann problem (1). (b) Rien
problem (I1). (c) Riemann problem (l11).

Riemann problems. The computed pressures are given in Fig. 5. Obviously, our me
yields solutions far more accurate than those obtained by the first-order scheme. Act
at this mesh size the first-order method fails almost entirely to resolve the elastic and pl
waves. Finally, the results of mesh refinement tests for the second-order scheme are ¢
in Fig. 6. Itis seen that spatial resolution of the scheme improves as the mesh size decr

6.2. Wave Propagation and Reflection

Figure 7 shows the schematic of a system made up of a body of water, a rock wall, an
In the water a shock propagates right, strikes the wall, and then induces some waves
initial distributions are given in Table Il. Under multi-dimensional stresses, rocks usu
exhibit elasticity and plasticity. We uge— V curve (2.5) withg = 1, or elastic-perfectly
plastic model (2.6), for the rock and derive its properties displayed in Table Il from relev
data given in [24].

TABLE Il
Initial Distributions in the Water—Rock-Air System

X<—-05m —05m<x<0m Om<x<1lm X>1m

(water) (water) (rock) (air)

o kg/m? 2300 1.25
u m/s 18.8852 0 0 0

p Pa 28877500 101325 101325 101325
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(b) Riemann problem (11). Cell number 150 (steel)x 150 (water). (c) Riemann problem (l11). Cell numked 50
(steel)x 150 (gas).

As shown in Figs. 8a and 8b, initially the shock in the water moves to the right. Suk
qguently, the shock hits the rock, and two shocks moving right, a leading elastic and a tra
plastic wave, are generated in the rock (Figs. 8c and 8d). Finally, the two shocks refle
the rock/air interface, and another shock moving right is produced in the air (Figs. 8e
8f). The calculation has resolved a triple-wave structure in the rock, which is a resul
interaction among different waves (see Fig. 8f). It can be seen in Fig. 8 that across the
interfaces the numerical results exhibit no spurious oscillations reported by some aut
(e.g., [5)]).

2
g

e s la Seoe e e "%

FIG. 7. Schematic representation of the water—rock—air system.
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FIG.8. Numerical results for the wave propagation and reflection. Cell nueabér(water)x 50 (rock)x 50
(air). CFL=1. (a), (b)t =1.68x 10*s. (c), (d)t =4.97 x 107*s. (e), ()t =1.25x 103s.

6.3. Spallation and Cavitation Induced by Explosion

In Fig. 9, a steel plate is placed on a layer of dynamite, above the plate there is a bo
water, and above the water there exists a compressed gas, whose top is constrained by
wall. After the dynamite is ignited, a blast propagates upwards and generates waves in
system. In the computation, the gravity is ignored, the pressure on the lower surface c
dynamite is approximated as zero, and the explosion product is treated as a perfect ga

TABLE 11l

Parameters for the Rock

Property Value Dimension
Pa 2300 kg/ni
m 2.528x 10'° Pa
G 1.002x 104 Pa
Y 1.2159x 10 Pa
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FIG. 9. Schematic description of the explosion-steel-water—gas system.

computation begins as the blast reaches the plate, and the initial and boundary cond
are shown in Table IV. In the tabje(r), u(r), and p(r) are determined analytically by the
dynamite density and the blast speed (see [25]), which are 1606 kagthi7667 m/s in the
computation, respectively. Again, we use properties given in Table | for the steel plate
Due to the action of the blast, a shock followed by rarefactions propagates upwatrc
the plate. Our method gives a sharp profile for the shock (Fig. 10a), which is a plastic v
(its elastic precursor is too weak to be observed). After the shock reflects at the plate/v
interface, downwards-moving rarefactions are created at the upper end of the plate, a
upwards-moving shock is generated in the water. The downwards- and upwards-mc
rarefactions interact with each other, causing tension in the plate. Then, the plate s
because of fatigue and the spallation zones spread downwards from a neighbor of its |
surface (Fig. 10b). Once the shock in the water reaches the water/gas interface, the
compressed (Fig. 10c). Similarly, at a later time, the water cavitates and the cavitation z
propagate downwards from the water/gas interface. The process of spallation and cavit

TABLE IV
Initial and Boundary Conditions in the Explosion-Steel-Water—-Gas System

rm (pres, = 1 kg/n?) o kg/m? um/s p Pa
0 (vacuum) 0
0-160 (explosion product, = 1.4) p(r) u(r) p(r)
160-1720 (steel) 7800.01 0 506625
1720-2720 (watep, =0) 0 506625
2720-2726.125 (gag,=1.4) 6.125 0 506625

2726125 (rigid wall) 0
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FIG.10. Numerical results for the spallation and cavitation. Cell nureb80 (explosion producty 80 (steel
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the spallation and cavitatioBCS=%; (X, — X;_). (e) Spallation and cavitation zones. The plate spalls in the le
shadow of stripes, while the water cavitates in the right shadow regions.

can be seen from the computed results given in Figs. 10d and 10e. Calculations on
meshesyield a process of spallation and cavitation similar to that shown in Figs. 10d and

7. CONCLUDING REMARKS

We have developed a second-order accurate Godunov method for computing unst
one-dimensional wave problems in coupled solid—water—gas systems. The method, ref
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to as an E-MUSCL scheme, is a sequel to Tang and Huang’s scheme [12], which is b
on van Leer’s MUSCL scheme [13]. The method has three key features: (i) it employs
hydro-elasto-plastic body, the Tait equation, and the ideal gas law to model solid, water.
gaseous phases, respectively; (ii) it utilizes the solutions of local solid—water—gas-vac
Riemann problems; and (iii) it uses the Lagrangian frame of reference to facilitate
tracking of material boundaries. A series of numerical experiments were carried oL
validate and test the accuracy and robustness of the method and underscore its abi
capture shock waves and phase interfaces with high resolution, clearly resolve elasti
plastic waves, and successfully describe onset and propagation of fracture and cauvit
zones.

The proposed approach treats all phases using the same numerical procedures and
nates the need for extra techniques to track material boundaries. This attribute is import:
it considerably simplifies programming. Furthermore, in the class of wave system we t
constructed, the classic solid—water—gas-vacuum Riemann problem has a unique so
and can be solved efficiently either by a Newton iterative method or by explicit formul
These properties of the Riemann problem compensate for its complexity and enhanc
efficiency of the entire methodology. It is also necessary to point out that our method ca
applied to systems consisting of multiple regions occupied by phases of the same ma
but with different parameters—provided, of course, that behaviors of each such materia
be described by one of the assumed EOS (e.g., two gases with different vajues twfo
solids with different sets ah andg). Therefore, the present method could be very useful
studying various engineering problems such as those involving laminated composite pl

The present Godunov methodology is strictly applicable to one-dimensional system:
extension, with the three features mentioned above, to multiple spatial dimensions i
from being trivial. A critical issue that needs to be addressed, in that context, is the algor
for tracking material boundaries in a multi-dimensional space, particularly, prediction
crack paths in solids and shapes of cavitation zones in water. However, we anticipate
such an extension is feasible, at least for some relatively simple cases, with the a
rezoning and front tracking techniques. Moreover, it is readily seen that in the EOS (Z
p or stress is a piecewise convex functionbbr strain. In fact, an alternative for the solid
phase scheme of the Godunov methodology may be developed if another solid phase
is used that defines stress as a piecewise linear or convex function of strain. Finally, it sk
be pointed out that the efficiency and overall simplicity of the proposed approach ca
further enhanced, without significantly compromising its accuracy, by replacing the e
solvers with approximate ones for the solid—water—gas-vacuum Riemann problems.
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